
AirControl AC418LR
RS-232 to Wireless RF Upstream Data Encoder Transmitter

Control an Unlimited Number of Remote Devices Individually or Simultaneously
Supports 2400 to 38.4K Baud Operation

Supports 2.5 to 10KBPS Data Transmission Speeds
Capable of Sending Commands up to 3,000 Feet

Transmit and Ready Status LEDs Indicate Device Operation
Software Configured Redundancy can Send Each Control Packet up to 255 Times
Superior 48/72-Bit Noise Rejection Protocol Ensures Reliable Consistent Operation

Includes Power Supply, Serial Cable, and Antenna

THIS DEVICE IS NOT FCC APPROVED.
THIS DEVICE SHOULD NEVER BE USED IN LIFE SAVING APPLICATIONS.

THIS DEVICE SHOULD NEVER BE USED IN APPLICATIONS THAT COULD RE-
SULT IN INJURY OR LOSS OF LIFE IF THE DEVICE WERE TO FAIL

The AirControl AC418LR gathers control commands
from your computer, attaches a noise rejection proto-
col, and transmits you control commands up to 3,000
feet to a remote wireless NCD device, such as a relay
controller, light dimmer, or other future computer con-
trol products we may offer. The AirControl is very easy
to use and requires no configuration when received;
however, there are ways to increase performance,
transmission range, and overall communications reli-
ability by reading the information in the manual. The
AirControl, for the most part, works very much like any
other NCD device that is attached to the serial port of
your computer. Simply send it a command and the
device responds. In this case, simply send it a com-
mand, the command is transmitted, and the device re-
sponds. The AirControl knows nothing of the com-
mand set for the device you are trying to control, in-
stead, it forwards your command to a remote device,
where it is interpreted. This allows the AirControl to
work with future devices with no firmware upgrades or
compatibility issues.

5-Year Repair

or Replace

Warranty!!!

FAST FACTS PLEASE READ THIS SECTION IF YOU READ NOTHING ELSE!
• The Mechanical Drawing can be found on the Product Description Page for the AirControl on our web site at www.controlanything.com.

• A Terminal Program such as HyperTerminal is NOT SUITABLE for Sending Wireless Commands.

• This device transmits data to a remote device, communication is one way only. Use the AirMonitor to Receive Data from a Remote Device.

• Your program must be written to begin all data transmissions with the ASCII Character Code 254.

• Every time you send a command to the AirControl, ASCII Character code 85 will be sent back to you once transmission has finished.

• Your program must be written so that it waits for the “85” response code after every command sent.

• The command set for a remote device resides in the remote device, the AirControl knows nothing of the commands being sent.

• You can increase noise rejection by using “Keys” to remotely communicate with a remote device.

• You can use keys to control an unlimited number of devices, individually or simultaneously.

• A key is a device number. There are three keys that make up a complete device number.

• The AirControl Supports 2.5KBPS, 5KBPS, 7.5KBPS, and 10KBPS communication speeds.

• Bit rates can be controlled in software at any time, regardless of the default DIP switch settings.

• Changing bit rates in software does NOT change the default bit rate, which can only be set by the DIP switches.

• You can increase performance by lowering the Time Out and Send (TOS value), but this can increase communication errors if set too low.

• You can increase reliability and range significantly by sending each data packet 5 or more times.

• You can overcome noise significantly while boosting range by sending each data packet 50 or more times.

• You can change the number of packet transmissions at any time in software, and a default value can be programmed into non-volatile memory.

• The remote device accepts only one data packet and rejects all others, preventing commands from executing multiple times.

• A new command is defined as a new serial transmission from your computer to the AirControl transmitter.

• The AirControl has a 64-Byte Serial Receive Buffer.

• Applications written for communication with the AirControl attempt to read settings from the AirControl when executed. If there is
a communication problem between the serial port and the AirControl, you will get a Type Mismatch Runtime Error.

Warranty
NCD Warrants its products against defects in materials and
workmanship for a period of 5 years. If you discover a defect,
NCD will, at its option, repair, replace, or refund the purchase
price. Simply return the product with a description of the prob-
lem and a copy of your invoice (if you do not have your invoice,
please include your name and telephone number). We will re-
turn your product, or its replacement, using the same shipping
method used to ship the product to NCD.

This warranty does not apply if the product has been modified
or damaged by accident, abuse, or misuse.

30-Day Money-Back Guarantee
If, within 30 days of having received your product, you find that
it does not suit your needs, you may return it for a refund. NCD
will refund the purchase price of the product, excluding ship-
ping/handling costs. This guarantee does not apply if the prod-
uct has been altered or damaged.

Copyrights and Trademarks
Copyright 2000 by NCD. All rights reserved. Other brand and
product names are trademarks of registered trademarks of their
respective holders.

Disclaimer of Liability
NCD is not responsible for special, incidental, or consequential
damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage
to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in
or used with NCD products.

Technical Assistance
Technical questions should be e-mailed to Ryan Sheldon at
ryan@controlanything.com. Technical questions submitted via
e-mail are answered up to 20 times daily. Technical support is
also available by calling (417) 646-5644.

NCD Contact Information

Mailing Address:
National Control Devices
P.O. Box 455
Osceola, MO 64776

Telephone:
(417) 646-5644

FAX:
(417) 646-8302

Internet:
ryan@controlanything.com
www.controlanything.com
www.controleverything.com

5-Year Repair
or Replace
Warranty

Antenna
Serial Cable

Power Supply 120VAC to 12VDC Computer Grade Regulated Switcher Type

DIP 1 DIP 2

OFF OFF 2400

ON OFF 9600

OFF ON 19.2K

ON ON 38.4K

BAUD RATE SELECTION:

DIP 3 DIP 4

OFF OFF 2.5K BPS

ON OFF 5K BPS

OFF ON 7.5K BPS

ON ON 10K BPS

DATA TRANSMISSION BIT RATE:

LED1: LEFT SIDE OF PCB LED2: RIGHT SIDE OF PCB
READY LED STAYS LIT UNTIL A

PACKET OF DATA IS TRANSMITTED
TRANSMIT LED LIGHTS ONLY DURING

RF TRANSMISSION

LED STATUS LIGHTS:

Electrical Ratings Min Typical Max
Input Voltage 2.1mm Barrel Connector, Center Positive 9VDC 12VDC 15VDC

Current Requirements - 100 ma -

Transmission Range - 1,500 ft 3,000 ft

Transmission Frequency - 418 MHz -

INCLUDED ACCESSORIES:

Sending Commands to the AirControl
The AirControl is capable of sending and receiving data via RS-
232 serial communications. The AirControl is compatible with
just about any computer or microcontroller ever produced, in-
cluding the Macintosh, Amiga, Basic Stamp, and of course,
Windows & DOS based machines.

Regardless of the system you are using, you will need access
to a programming language that supports program control of
the serial port on your system.

A terminal program is not suitable for sending data to the Air-
Control. Commands should be sent using ASCII character
codes 0-255 rather than ASCII characters (A, B, C etc.). See
“ASCII Codes vs. Characters” on this page.

Most systems require you to open the appropriate serial port
(COM port) prior to sending or receiving data.

Because there are so many different ways to send and receive
data from various languages on various platforms, we will pro-
vide generic instructions that can be easily converted to your
favorite language.

For example, if this manual says “Send ASCII 254”, the user
will need to translate this instruction into a command that is ca-
pable of sending ASCII character code 254.

To Send ASCII 254 from Visual Basic, you will use the following
line:

MSComm1.Output = Chr$(254)

In Qbasic, you can send ASCII 254 using the following line of
code:

Print #1, Chr$(254);

Note that sending ASCII character code 254 is NOT the same
as sending ASCII characters 2, 5, and 4 from a terminal pro-
gram. Typing 2, 5, and 4 on the keyboard will transmit three
ASCII character codes.

In your program, you will need to make provisions for reading
data from the serial port. Your programming language will sup-
port commands for reading data from the AirControl.

For your convenience, we have provided several programming
examples in Visual Basic 6 for communicating with the AirCon-
trol. These examples should greatly speed development time.
You may want to visit www.controleverything.com for the lat-
est software and programming examples.

Programming examples for the AirControl are much more ex-
tensive for Visual Basic 6 users than for any other programming
language. If you are not a VB programmer, you may consider
looking at the VB6 source code, as it is easily translated into
other popular languages.

Regardless of your programming background, the pro-
vided Visual Basic 6 source code is very easy to under-
stand and will likely resolve any communication questions
you may have. VB6 programming examples may be
viewed in any text editor.

The differences between ASCII codes and ASCII characters
tend to generate a lot of confusion among first-time RS-232
programmers. It is important to understand that a computer
only works with numbers. With regard to RS-232 data, the
computer is only capable of sending and receiving numbers
from 0 to 255.

What confuses people is the simple idea that the numbers 0 to
255 are assigned letters. For instance, the number 65 repre-
sents the letter A. The number 66 represents the letter B.
Every character (including numbers and punctuation) is as-
signed a numeric value. This standard of assignments is called
ASCII, and is a universal standard adopted by all computers
with an RS-232 serial port.

ASCII characters codes can be clearly defined as numbers
from 0 to 255.

ASCII characters however are best defined as letters, A, B, C,
D, as well as punctuation, !@#$%, and even the numbers 0-9.

Virtually all programming languages permit you to send ASCII
in the form of letters or numbers. If you wanted to send the
word “Hello” out the serial port, it is much easier to send the
letters H, e, l, l, and o than it is to send the ASCII character
codes that represent each letter.

For the purposes of controlling NCD devices however, it is
much easier to build a numeric command set. Especially when
communicating to devices where you want to speak to lots of
outputs (which are numbered), inputs (which are also num-
bered), or control specific devices using their device number
(from 0 to 255).

Put simply, it is easier to control NCD devices using ASCII
character codes 0 to 255 than it is to use ASCII characters A,
B, C, D, etc.

Because terminal programs are ASCII character based, it may
be difficult to generate the proper series of keystrokes that
would be necessary to activate a particular function. Therefore,
they are not suitable for controlling NCD devices. In a real
world control application, a terminal program would not likely be
used to control NCD devices anyway. Therefore, a program-
ming language that supports the transmission and reception of
ASCII character codes 0 to 255 is highly recommended.

ASCII Codes vs. Characters

Sending Wireless Commands
The AirControl works just like any other NCD serial device. It
waits for a command then processes the command. The only
difference it, the command isn’t really processed by the AirCon-
trol. Instead, incoming commands are packaged up and trans-
mitted wirelessly to a remote device. Once transmission has
finished, the AirControl will send ASCII character code 85 back
to your computer, signaling that it has finished processing your
command.

Meanwhile, the remote device waits for valid data packets. Un-
der normal operation, all kinds of noise is picked up by the re-
ceiver on the remote device. The processor on the remote de-
vice is constantly filtering though the incoming noise, waiting for
a data packet that follows our proprietary format.

Once the data packet is received, the remote device decodes
the data packet, checks it for errors, and then attempts to proc-
ess the packet as a command. In other words, the remote de-
vice understands the command set, the AirControl only under-
stands how to package up your command and send it out.

There are only a few rules you MUST follow when using the
AirControl.

1) It is NOT possible to send random data to the AirControl,

all data must start with 254, followed by a command se-
quence that fits the format of the remote device. We will
show you some examples, this is just an introduction.

2) You can send commands directly to the AirControl, setting
various parameters at any time. Commands that are di-
rected to the AirControl must begin with ASCII character
code 253. Again, we will show you some examples of this.

3) The AirControl needs time to transmit your data packets. It
will tell you when it is finished by sending ASCII character
code 85 upon completion of your transmission. Don’t try to
send more commands while the AirControl is transmitting,
your commands will be ignored. So for every command
you send, you will need to wait for an 85 response.

4) There is a 64-byte limit to the number of bytes you can
send, which includes the 254 header byte. NCD devices
typically have a command structure that is no more than
10-bytes, but we do have plans to make use of this extra
buffer with future products.

The following Visual Basic 6 Example source code demon-
strates subroutines that work well with the AirControl. Keep in
mind, all commands sent to the AirControl are acknowledged
by sending ASCII character code 85 back to the host computer
once processing and/or transmission has finished.

The following routine works well for reading data from the Air-
Control. When a command is sent, the GetData function
should be called. GetData will contain the value 85 when the
command has successfully completed. A Timeout value of
25,000 shown below may need to be increased or decreased
for better performance. Example usage will be shown in other
examples, but this is an essential routine for making sure the
AirControl has finished it’s last command.

Public Function GetData()
 Timeout = 0
 Do 'Wait for Device to Reply
 If Timeout > 25000 then Exit Function
 Timeout = Timeout + 1
 DoEvents 'Allow Windows to MultiTask
 Until MSComm1.InBufferCount > 0 'If the Device Replies
 GetData = Asc(MSComm1.Input) 'Return Response Code
 Debug.Print GetData
End Sub

The following commands work with our RxxW1LR series
relay controllers. Keep in mind, this is just an example of
how to send a wireless command to activate a relay. Ac-
tual Code may be a little different. The actual command
set is defined by the remote device, NOT the AirControl.

Public Sub SetTheStatusOfAllRelays_Bank1()
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(1) 'Control Relay Bank 1
 MSComm1.Output = Chr$(40) 'Set the Status of All Relays
 MSComm1.Output = Chr$(255) 'Activates All Relays on Remote Device
 GetData 'Wait for Transmission to Finish
 'The AirControl will Return 85
End Sub

If the Remote Device has the “Required Keys” Option
Enabled, you can send commands to a specific device.
Here is an example of sending keys to “unlock” a com-
mand in a remote device. This routine assumes the re-
mote device has been programmed with the Keys 25, 10,
and 35. You can program each of the three keys to be
anything from 0 to 255.

Public Sub SetTheStatusOfAllRelays_Bank1()
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(25) 'Send Key 1
 MSComm1.Output = Chr$(10) 'Send Key 2
 MSComm1.Output = Chr$(35) 'Send Key 3
 MSComm1.Output = Chr$(1) 'Control Relay Bank 1
 MSComm1.Output = Chr$(40) 'Set the Status of All Relays
 MSComm1.Output = Chr$(255) 'Activates All Relays on Remote Device
 GetData 'Wait for Transmission to Finish
 'The AirControl will Return 85
End Sub

Visual Basic Programming Examples

Sample Code:
Receiving Responses from the AirControl

Sample Code:
Sending Commands to a Wireless Relay Controller

Sample Code:
Using the “Required Keys” Option

The EWC Command Set: Software Control of Multiple Wireless NCD Devices
Using the EWC Command Set, it is possible to remotely control any
number of remote devices individually or simultaneously. EWC com-
mands are used to “Enable” and “Disable” remote devices. Each re-
mote device is identified by a unique Key, which is a set of three num-
bers that you store into the remote device. Once these three keys have
been stored, you can use EWC commands to enable and disable the
remote device. Using this simple protocol, it is very easy to control
which devices are responding to your commands and which devices
are ignoring your commands. Keep in mind, EWC commands are the
only set of commands that are NEVER ignored. NOTE: THE EWC
COMMAND SET DOES NOT WORK ON REMOTE DEVICES THAT
HAVE THE “KEYS REQUIRED” OPTION ENABLED. IN GENERAL,
THE “KEYS REQUIRED” OPTION IS A LITTLE EASIER TO USE, BUT
COMMUNICATIONS IS SLOWER, AND IS LIMITED TO CONTROL-
LING ONLY ONE DEVICE AT A TIME.

The EWC command set is virtually identical to the E3C command set
found on our directly wired RS-232 devices. There are only a few mi-
nor differences. Three keys are used to replace a single device num-
ber. The AirControl does not really know anything about EWC com-
mands, it just transmits the command codes to all wireless devices
within range. The remote device then determines if it should be en-
abled or disabled. Since the AirControl is used for communication of
EWC commands, the AirControl will report back an 85 after processing,
which is another notable difference from standard E3C commands.
Since our wireless LR Series controllers are only one way, it is not pos-
sible to retrieve the keys or other settings from the remote device. So
take note of your keys (device number) settings stored within your re-
mote devices. Lastly, E3C command 253 was eliminated from the
EWC command set due to its lack of use.

248 Enable All Devices:
Tells all devices to respond to your commands.

249 Disable All Devices:
Tells all devices to ignore your commands.

250 Enable a Selected Device:
Tells a specific device to listen to your commands.
You will need to send 3 keys, identifying the device you would
like to enable.

251 Disable Selected Device:
Tells a specific device to ignore your commands.
You will need to send 3 keys, identifying the device you would
like to disable.

252 Enable Selected Device Only:
Tells a specific device to listen to your commands, all other de-
vices will ignore your commands. You will need to send 3
keys, identifying the device you would like to enable.

As you probably already know, it is possible to control an unlimited
number of devices remotely. There are two ways of doing this, depend-
ing on your preference. Devices are identified by a device number,
which consists of three number, each set to a value between 0 and
255. You will need to program the remote device with a device num-
ber, usually done when the remote device is in “Program” mode. When
the remote device is in “Run” mode, it is ready to respond to your com-
mands.

Require Keys Method
This is a very convenient protocol, very easy to implement that allows
you to control one remote device at a time. Communications is slower,
but this method offer superior 72-bit noise rejection. When the “Require
Keys” options is enabled on a remote device, keys must be immediately
transmitted after the 254 command mode header. Only the device with
correct key will respond. This is one our favorite methods of remote
control because of it’s ease of implementation….just add the three key
numbers after the 254 and before the actual command code. It really
doesn’t get any easier than to use the Required Keys Method.

EWC Networking
EWC cuts down on the number of data bytes sent out the serial port,
which greatly increases communication speed. Noise rejection is lim-
ited to 42 bits using this method. However, it is possible to control mul-
tiple devices at one time by enabling and disabling remote devices prior
to sending commands. Only the enabled devices will accept and proc-
ess your commands. The apropriate command and three keys can be
transmitted to control which devices are enabled (listening to your con-
trol commands) and which devices are disabled (ignoring your control
commands).

Public Sub EnableAllDevices()
 'Enable All EWC Devices
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(248) 'EWC Enable All Device Command
 GetData
End Sub

Public Sub DisableAllDevices()
 'Disable All EWC Devices
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(249) 'EWC Disable All Device Command
 GetData
End Sub

Public Sub EnableSpecificDevice(Device)
 'Enable A Specific EWC Devices, Other Devices will be unchanged
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(250) 'EWC Disable Specific Device Command
 MSComm1.Output = Chr$(Key1) 'Device Number (Key 1) to Enable
 MSComm1.Output = Chr$(Key2) 'Device Number (Key 2) to Enable
 MSComm1.Output = Chr$(Key3) 'Device Number (Key 3) to Enable
 GetData
End Sub

Public Sub DisableSpecificDevice(Device)
 'Disable A Specific EWC Devices, Other Devices will be unchanged
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(251) 'EWC Disable Specific Device Command
 MSComm1.Output = Chr$(Key1) 'Device Number (Key 1) to Disable
 MSComm1.Output = Chr$(Key2) 'Device Number (Key 2) to Disable
 MSComm1.Output = Chr$(Key3) 'Device Number (Key 3) to Disable
 GetData
End Sub

Public Sub DisableAllDevicesExcept(Device)
 'Disable All EWC Devices Except (Device)
 MSComm1.Output = Chr$(254) 'Enter Command Mode
 MSComm1.Output = Chr$(252) 'EWC Disable All Device Except Command
 MSComm1.Output = Chr$(Key1) 'Device Number (Key 1) to Enable
 MSComm1.Output = Chr$(Key2) 'Device Number (Key 2) to Enable
 MSComm1.Output = Chr$(Key3) 'Device Number (Key 3) to Enable
 GetData
End Sub

The EWC Command Set

Networking Comparison

Sample Code: The EWC Command Set

AirControl Advanced Configuration Settings
It should be stated that the AirControl is ready to run, right out of the
box. You don’t really need to do anything but start sending commands
to remote devices. Having said that, we recognize that there are users
who are going to want the best possible performance, or to be able to
change settings on the fly, either to increase performance or improve
reliability. The AirControl has a built in command set that you may find
very useful for on the fly setting changes, allowing you to greatly im-
prove performance or long range communication. It should be stated
that this section is completely optional, if you have no interest in tweak-
ing some performance parameters, then skip this section.

If you are familiar with the command structure of NCD devices, you will
find that up until this point, you will always use ASCII character code
254 to enter command mode. This system works great for communi-
cating to a device. But communications devices need to have their own
command structure, leaving the “254” system untouched. You can
speak to the AirControl at any time using the “253” command structure.
The “253” command structure enters command mode for the AirCon-
trol, leaving the “254” system alone.

To simplify, you will use 254 to enter command mode on NCD devices.
You will use 253 to enter command mode on NCD communication de-
vices.

Here you will find some examples of issuing different commands to the
AirControl. These commands are never transmitted, they are used
exclusively to communicate to the AirControl hardware memory.

0 Test 2-Way Communication:
This command sends 85 back to the computer, used for check-
ing 2-way communication between the AirControl and the Com-
puter.

1 Get Settings:
This Command retrieves two non-volatile values out of the Air-
Control memory. The first value returned will contain the stored
“Redundancy” value, which contains the default number of
times each command packet is sent. The second byte returned
contains the Time Out and Send (TOS) value. Which can be
used to increase communication speed (lowering this value in-
crease speed, but can cause communication errors).

2 Store Settings:
This command requires two parameters in the following order:
Redundancy and TOS, explained above.

3 Restore Default Settings:
This command restores the AirControl to known Safe factory
default settings.

4 Set Bit Rate:
This command allows you to change the bit rate of data trans-
missions at any time. This setting over rides the dip switch set-
tings, but it does not change the power up default settings.
This command requires a parameter of 0-3, setting bit rates of
2.5K, 5K, 7.5K, and 10KBPS respectively.

5 Set Redundancy:
This command overrides, but does not alter the power up de-
fault setting. This command requires a parameter of 1 to 255,
indicating how many times each command is transmitted. A
greater value increases communication range and reliability
while a lower value increases communication speed.

• Remote devices that are outside normal communications range
may become accessible if the remote device is set to a lower bit
rate. Use Command 4 (below) to lower the bit rate at any time to
communicate to distant devices. Use command 4 to change the
bit rate back up to 10KBPS for faster communications with remote
devices that are close by.

• Use Command 5 (below) with a parameter value of 255 for distant
devices to improve communication range. You can lower the
value at any time to 5 or 10 to communicate to nearby devices at a
faster speed.

• Use Command 4 and 5 together to significantly increase communi-
cation range or speed. In some environments, it may be more
beneficial to only change Command 5. It all depends on how
much electrical interference you have in your environment.

• Use Command 5 (below) with a parameter value of 255 for com-
mands that you consider to be “important”. For instance, if you
want to turn all the lights off in a building at the end of a day, your
commands will be transmitted 255 times, helping to insure all de-
vices respond to your commands.

Public Sub Test2Way()
 MSComm1.Output = Chr$(253) 'Enter AirControl Command Mode
 MSComm1.Output = Chr$(0) 'Test 2-Way Communications
 GetData 'AirControl Responds with 85
End Sub

Public Sub GetStoredSettings()
 MSComm1.Output = Chr$(253) 'Enter AirControl Command Mode
 MSComm1.Output = Chr$(1) 'Get Settings
 GetData 'AirControl Responds with Redundancy
 GetData 'AirControl Responds with TOS Value
End Sub

Public Sub StoreDefaultSettings(Redun,TOS)
 MSComm1.Output = Chr$(253) 'Enter AirControl Command Mode
 MSComm1.Output = Chr$(2) 'Store Default Settings Command
 MSComm1.Output = Chr$(Redun) 'Store Redundancy Value
 MSComm1.Output = Chr$(TOS) 'Store TOS Value
End Sub

Public Sub RestoreDefaultSettings()
 MSComm1.Output = Chr$(253) 'Enter AirControl Command Mode
 MSComm1.Output = Chr$(3) 'Set to Factory Default Settings
 GetData 'AirControl Responds with 85
End Sub

Public Sub ChangeBitRate(BitRate)
 MSComm1.Output = Chr$(253) 'Enter AirControl Command Mode
 MSComm1.Output = Chr$(4) 'Change BitRate Command
 MSComm1.Output = Chr$(BitRate)'BitRate = 0-3 0=2.5K 3=10K
 GetData 'AirControl Responds with 85
End Sub

Public Sub ChangeRedundancy(Redun)
 MSComm1.Output = Chr$(253) 'Enter AirControl Command Mode
 MSComm1.Output = Chr$(5) 'Change Redundancy Value
 MSComm1.Output = Chr$(Redun) 'Commands are Sent 1-255 Times
 GetData 'AirControl Responds with 85
End Sub

AirControl Command Set

Advanced Communication Tips

Sample Code: The AirControl Command Set

AirControl Applications
We have not developed any software for controlling the AirControl di-
rectly. Since the AirControl is used in combination with remote devices,
we decided it would be better to integrate AirControl configuration into
applications that apply to a specific remote device. This will allow you
to experiment with the remote device and the AirControl at the same
time. Applications written for communication with the AirControl
attempt to read settings from the AirControl when executed. If
there is a communication problem between the serial port and the
AirControl, you may receive an error message.

To keep our software simple, we did NOT include any error checking
into our programs. Keep in mind, the AirControl MUST be connected to
a Valid COM Port (1-6), and set at 38.4K Baud for proper operation.

NOTICE: OUR VISUAL BASIC EXAMPLE PROGRAMS AND SOFT-
WARE ARE ALWAYS AVAILABLE FOR DOWNLOAD ON OUR WEB
SITE.

Below:
AirSwitch is a program you can install on your computer to re-
motely control relays. AirSwitch includes a full range of AirCon-
trol Functions, allowing you to tweak the AirControl for maximum
performance and communications range. AirSwitch also supports
EWC and Keys Required networking protocols. Source Code is
Included in the Archive for Visual Basic 6.

Note that some settings can cause loss of communication between the
AirControl and the remote device, we encourage our customers to ex-
periment with the different settings to see how they function. Take
note, the AirControl MUST be connected to a valid COM port and set
for 38.4K Baud operation for our software to function.

